Respuesta :

Answer:

[tex]\frac{2c}{3x^2c}+ \frac{36x^3c}{3x^2c} +\frac{24x^2}{3x^2c} [\tex]

Step-by-step explanation:

We need to find sum of 2 / 3x^2 +12x and 8 / c

So, solving:

[tex](\frac{2}{3x^2} + 12 x ) +\frac{8}{c}[/tex]

Taking LCM of 3x^2 and 1 i.e. 3x^2

[tex]=(\frac{2 + 12 x(3x^2)}{3x^2} ) +\frac{8}{c}\\=(\frac{2 + 36x^3}{3x^2} ) +\frac{8}{c}\\=\frac{2 + 36x^3}{3x^2} +\frac{8}{c}\\LCM \,\, 36x^2 c\\=\frac{(2 + 36x^3)c + 8(3x^2)}{3x^2c}\\=\frac{2c + 36x^3c + 24x^2}{3x^2c}\\= \frac{2c}{3x^2c}+ \frac{36x^3c}{3x^2c} +\frac{24x^2}{3x^2c}[/tex]