contestada

Problem: A fair coin is flipped nine times and the numbers of heads are counted. Question: What is the variance for this distribution?
5 points
2.25
0.5
4.5
9

Respuesta :

Answer: Option A

[tex]\sigma ^ 2 = 2.25[/tex]

Step-by-step explanation:

The number of faces obtained by flipping the coin 9 times is a discrete random variable.

If we call this variable x, then, the probability of obtaining a face in each test is p.

Where [tex]p = 0.5[/tex]

If we call n the number of trials then:

[tex]n = 9[/tex]

The distribution of this variable is binomial with parameters

[tex]p = 0.5\\\\n = 9[/tex]

For a binomial distribution, the variance "[tex]\sigma^2[/tex]" is defined as

[tex]\sigma ^ 2 = np(1-p)[/tex]

[tex]\sigma ^ 2 = 9(0.5)(1-0.5)[/tex]

[tex]\sigma ^ 2 = 9(0.5)(0.5)[/tex]

[tex]\sigma ^ 2 = 2.25[/tex]