Respuesta :

Answer:

[tex]6z^{4}[/tex]

Step-by-step explanation:

Given in the question an expression,

[tex]\frac{ (2z^5)(12z^3)}{4z^4}[/tex]

Step 1

Apply exponential "product rule"

[tex]x^{m}x^{n}=x^{m+n}[/tex]

[tex]\frac{ 12(2)z^5)(z^3)}{4z^4}[/tex]

[tex]\frac{ (24)z^5)(z^3)}{4z^4}[/tex]

[tex]\frac{ 24(z^{(5+3)})}{4z^4}[/tex]

[tex]\frac{ 24(z^{8})}{4z^4}[/tex]

Step 2

Apply exponential " divide rule"

[tex]\frac{x^{m}}{x^{n}}=x^{m-n}[/tex]

[tex]\frac{24/4(z^{8})}{z^4}[/tex]

[tex]\frac{6(z^{8})}{z^4}[/tex]

[tex]\frac{6(z^{8-4})}{1}[/tex]

[tex]6z^{4}[/tex]