If the measure of arc AD = (6x -80)° and <G = (x + 2)°, what is the measure of <G?

Answer: [tex]\angle G=23\°[/tex]
Step-by-step explanation:
Remember that an inscribed angle is defined as an angle formed by two chords and whose vertex lies on the circle.
By definition, the measure of an inscribed angle is:
[tex]Inscribed\ Angle=\frac{Intercepted\ Arc}{2}[/tex]
You know that:
[tex]Intercepted\ Arc=AD = (6x -80)\\\\Inscribed\ Angle=\angle G=(x + 2)[/tex]
Then, you need to substitute values and solve for "x":
[tex](x+2)=\frac{(6x -80)}{2}\\\\2(x+2)=6x-80\\\\2x+4=6x-80\\\\4+80=6x-2x\\\\84=4x\\\\x=\frac{84}{4}\\\\x=21[/tex]
Substituting the value of "x" into [tex]\angle G=(x + 2)\°[/tex] you get:
[tex]\angle G=(21 + 2)\°=23\°[/tex]
Answer:
The measure of <G = 23°
Step-by-step explanation:
From the figure we can write,
The measure of <G is half the the measure of arc AD
To find the value of x
We have AD = (6x - 80)° and <G = (x + 2)°
6x - 80 = 2(x + 2)
6x - 80 = 2x + 4
6x - 2x = 4 + 80
4x = 84
x = 84/4 = 21
To find the measure of <g
m<G = x + 2
= 21 + 2 = 23°
Therefore the measure of <G = 23°