Respuesta :

Answer:

  • ∠g and ∠h are complementary angles
  • ∠g and ∠h are acute angles

Step-by-step explanation:

Use the given information to determine what the angles can be.

  g = 2x -90 . . . . given

  g > 0 . . . . . . . . . given

  2x -90 > 0

  2x > 90 . . . . . add 90

  x > 45 . . . . . . divide by 2

__

  h = 180 -2x

  h > 0

  180 -2x > 0

  180 > 2x

  90 > x

__

The requirement that both angles be greater than zero puts limits on x:

  45 < x < 90

We can put this back into the given relations for g and h:

  g = 2x -90

  x = (g +90)/2

  45 < (g +90)/2 < 90 . . . . substitute for x

  0 < g/2 < 45 . . . . . . . . . . subtract 45

  0 < g < 90 . . . . . . . . . . . . g is an acute angle

Similarly, ...

  h = 180 -2x

  x = (180 -h)/2 = 90 -h/2

  45 < (90 -h/2) < 90 . . . . substitute for x

  -45 < -h/2 < 0 . . . . . . . . . subtract 90

  90 > h > 0 . . . . . . . . . . . multiply by -2; h is an acute angle

__

We can add the angle measures to see if they are supplementary or complementary:

  g + h = (2x -90) +(180 -2x)

  g + h = 90 . . . . . simplify; the angles are complementary

__

The relevant observations are ...

  • ∠g and ∠h are complementary angles
  • ∠g and ∠h are acute angles