Help asap!!!!

What is the length of the arc intercepted by a central angle of 62° on a circle with radius 8? Use 3.14 for π and round your answer to the nearest hundredth, if necessary.

7.25


9.11


8.65


7.82


Respuesta :

8.65 is the answer to this question.

Answer:

Option 3 - 8.65  

Step-by-step explanation:

Given : The arc intercepted by a central angle of 62° on a circle with radius 8.

To find : What is the length of the arc?

Solution :

The formula to find arc length is

[tex]l=2\pi r\times (\frac{\theta}{360^\circ})[/tex]

Where, l is the length of the arc

r is the radius of the circle r=8

[tex]\theta=62^\circ[/tex] is the angle subtended

Substitute the values in the formula,

[tex]l=2\times 3.14\times 8\times (\frac{62^\circ}{360^\circ})[/tex]

[tex]l=50.24\times 0.1722[/tex]

[tex]l=8.65[/tex]

Therefore, option 3 is correct.

The length of the arc is 8.65 unit.