Can you please convert the following series into summation notation?


Write each series in summation notation beginning with k = 1.


1. [tex]\frac{1}{2} +\frac{2}{3} +\frac{3}{4} +\frac{4}{5}+\frac{5}{6}


2. [tex]-11+12-13+14-15+16[/tex]


3. [tex]9-16+25-36+49-64[/tex]


4. [tex]3+\frac{3}{2} +1+\frac{3}{4}+\frac{3}{5}[/tex]

Respuesta :

Tucon

 

[tex]\displaystyle\\1)\\\\\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}=\boxed{\sum _{k=1}^{5}{\frac{k}{k+1}}}\\\\\\2)\\\\ -11+12-13+14-15+16=\boxed{\sum _{k=1}^{6}{(-1)^k\cdot(10+k)} }[/tex]

[tex]\displaystyle\\3)\\9-16+25-36+49-64=\boxed{\sum_{k=1}^{6}{(-1)^{k+1}\cdot(k+2)^2}}\\\\\\4)\\\\3+\frac{3}{2}+1+\frac{3}{4}+\frac{3}{5}=\frac{3}{1}+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}+\frac{3}{5}=\boxed{\sum_{k=1}^{5}{\frac{3}{k}}}[/tex]