Consider the parametric equations below.

x = t sin(t), y = t cos(t), 0 ≤ t ≤ π/6

Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis.

Integral (0 to π/6) dt

Use your calculator to find the surface area correct to four decimal places.

Respuesta :

The area of the surface is

[tex]\displaystyle2\pi\int_0^{\pi/6}|y(t)|\sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]

[tex]t\cos t\ge0[/tex] for all [tex]0\le t\le\dfrac\pi6[/tex], and

[tex]\dfrac{\mathrm dx}{\mathrm dt}=t\cos t+\sin t[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dt}=-t\sin t+\cos t[/tex]

[tex]\implies\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2=(t\cos t+\sin t)^2+(t\sin t-\cos t)^2=t^2+1[/tex]

The integral is then

[tex]\displaystyle2\pi\int_0^{\pi/6}t\cos t\sqrt{t^2+1}\,\mathrm dt\approx0.8547[/tex]