Answer:
Solution A: 120 ounces
Solution B: 30 ounces
Step-by-step explanation:
Let's call A the amount of Solution A. Solution A is 70% salt
Let's call B the amount of Solution B. Solution A is 95% salt
The resulting mixture should have 75% salt and 150 ounces .
Then we know that the total amount of mixture will be:
[tex]A + B = 150[/tex]
Then the total amount of salt in the mixture will be:
[tex]0.7A + 0.95B = 0.75 * 150[/tex]
[tex]0.7A + 0.95B = 112.5[/tex]
Then we have two equations and two unknowns so we solve the system of equations. Multiply the first equation by -0.95 and add it to the second equation:
[tex]-0.95A -0.95B = 150 * (-0.95)[/tex]
[tex]-0.95A -0.95B =-142.5[/tex]
[tex]-0.95A -0.95B =-142.5[/tex]
+
[tex]0.7A + 0.95B = 112.5[/tex]
--------------------------------------
[tex]-0.25A = -30[/tex]
[tex]A = \frac{-30}{-0.25}[/tex]
[tex]A = 120\ ounces[/tex]
We substitute the value of A into one of the two equations and solve for B.
[tex]120 + B = 150[/tex]
[tex]B = 30\ ounces[/tex]