A chemical company makes two brands of antifreeze. The first brand is 20% pure antifreeze, and the second brand is 70% pure antifreeze. In order to obtain 30 gallons of a mixture that contains 35% pure antifreeze, how many gallons of each brand of antifreeze must be used?

Respuesta :

Answer:

First brand of antifreeze: 21 gallons

Second brand of antifreeze: 9 gallons

Step-by-step explanation:

Let's call A the amount of  first brand of antifreeze. 20% pure antifreeze

Let's call B the amount of second brand of antifreeze. 70% pure antifreeze

The resulting mixture should have 35% pure antifreeze, and 30 gallons.

Then we know that the total amount of mixture will be:

[tex]A + B = 30[/tex]

Then the total amount of pure antifreeze in the mixture will be:

[tex]0.2A + 0.7B = 0.35 * 30[/tex]

[tex]0.2A + 0.7B = 10.5[/tex]

Then we have two equations and two unknowns so we solve the system of equations. Multiply the first equation by -0.7 and add it to the second equation:

[tex]-0.7A -0.7B = -0.7*30[/tex]

[tex]-0.7A -0.7B = -21[/tex]

[tex]-0.7A -0.7B = -21[/tex]

               +

[tex]0.2A + 0.7B = 10.5[/tex]

--------------------------------------

[tex]-0.5A = -10.5[/tex]

[tex]A = \frac{-10.5}{-0.5}[/tex]

[tex]A = 21\ gallons[/tex]

We substitute the value of A into one of the two equations and solve for B.

[tex]21 + B = 30[/tex]

[tex]B = 9\ gallons[/tex]