Which shows the correct substitution of the values a, b, and c from the equation 0 = – 3x2 – 2x + 6 into the quadratic formula? Quadratic formula: x =

Respuesta :

Answer:

The answer in the procedure

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]0=-3x^{2} -2x+6[/tex]  

so

[tex]a=-3\\b=-2\\c=6[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(-3)(6)}} {2(-3)}[/tex]

[tex]x=\frac{2(+/-)\sqrt{74}} {-6}[/tex]

[tex]x=\frac{-2-\sqrt{74}} {6}[/tex]

[tex]x=\frac{-2+\sqrt{74}} {6}[/tex]

Answer:

[tex]x=\frac{-(-2)\pm \sqrt{(-2)^2-4(-3)(6)}}{2(-3)}[/tex]

Step-by-step explanation:

The given quadratic equation is

[tex]-3x^2-2x+6=0[/tex]            .... (1)

If a quadratic equation is defined as

[tex]ax^2+bx+c=0[/tex]            .... (2)

then the quadratic formula is

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

On comparing (1) and (2), we get

[tex]a=-3,b=-2,c=6[/tex]

Substitute [tex]a=-3,b=-2,c=6[/tex] in the above formula.

[tex]x=\frac{-(-2)\pm \sqrt{(-2)^2-4(-3)(6)}}{2(-3)}[/tex]

Therefore, the correct substitution of the values a, b, and c in the quadratic formula is [tex]x=\frac{-(-2)\pm \sqrt{(-2)^2-4(-3)(6)}}{2(-3)}[/tex].