Respuesta :

Answer:

The answer is D.

Step-by-step explanation:

(1/2, -sq3/2)

Use reference point for pi/3, 11pi/3 is in the fourth quadrant.

By trigonometry functions the coordinates of the terminal point are [tex]$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$[/tex].

How to find the coordinates of the terminal point?

Given:

t = 11 pi / 3

By the definitions of trigonometry functions, the point P has as coordinates P(x, y)

[tex]$x=\cos \left(\frac{11 \pi}{3}\right)$[/tex], and [tex]$y=\sin \left(\frac{11 \pi}{3}\right)$[/tex]

Trig table and unit circle give

[tex]${data-answer}amp;x=\cos \left(\frac{11 \pi}{3}\right)[/tex]

Simplifying the above equation,

[tex]$=\cos \left(-\frac{\pi}{3}+4 \pi\right)[/tex]

[tex]$=\cos \left(-\frac{\pi}{3}\right)[/tex]

[tex]$=\cos \left(\frac{\pi}{3}\right)[/tex]

[tex]$=\frac{1}{2} \\[/tex]

Therefore,

[tex]${data-answer}amp;y=\sin \left(\frac{11 \pi}{3}\right)=\sin \left(-\frac{\pi}{3}+4 \pi\right)[/tex]

Simplifying the above equation,

[tex]$=\sin \left(-\frac{\pi}{3}\right) \\[/tex]

Therefore,

[tex]${data-answer}amp;-\sin \left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}[/tex]

[tex]$P\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$[/tex].

P is in Quadrant 4.

[tex]$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$[/tex] be the coordinates of the terminal point at t = 11 pi / 3.

By trigonometry functions the coordinates of the terminal point are [tex]$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$[/tex].

Therefore, the correct answer is option D. [tex]$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$[/tex].

To learn more about trigonometry functions

https://brainly.com/question/1143565

#SPJ2