Respuesta :

For this case we have that the fractions have the same denominator, then we can rewrite as:

[tex]\frac {3x + 2 + (2x -5)} {x-1} =[/tex]

We eliminate the parenthesis:

[tex]+*+=+[/tex]

[tex]+*-=-[/tex]

[tex]\frac {3x + 2 + 2x - 5} {x-1} =[/tex]

We add common terms of the numerator:

[tex]\frac {5x-3} {x-1}[/tex]

Thus, the correct expression is option B.

Answer:

Option B

Answer: OPTION B.

Step-by-step explanation:

Given the rational expressions [tex]\frac{3x+2}{x-1}[/tex] and [tex]\frac{2x-5}{x-1}[/tex], we can observe that both have the same denominator, then we can add them.

We must rewrite the denominator [tex]x-1[/tex] and add the numerators. Then:

[tex]=\frac{(3x+2)+(2x-5)}{x-1}[/tex]

Therefore, adding the like terms on the numerator, we get the following sum:

[tex]=\frac{5x-3}{x-1}[/tex]

We can observe that this sum matches with the sum shown in the option B.