Respuesta :

Answer:

[tex]z =3\sqrt{13}[/tex]

Step-by-step explanation:

In the figure you can identify up to 3 straight triangles.

To solve the problem, write the Pythagorean theorem for each triangle.

Triangle 1

[tex]13^2 = z^2 + x^2[/tex]

Triangle 2

[tex]z^2 = y^2 + 9^2[/tex]

Triangle 3

[tex]x^2 = y^2 + 4^2[/tex]

Now substitute equation 2 and equation 3 in equation 1 and solve for y.

[tex]13^2 = y^2 + 9^2 + y^2 + 4^2[/tex]

[tex]13^2 = 2y^2 + 9^2 + 4^2[/tex]

[tex]169 = 2y^2 + 81 + 16[/tex]

[tex]2y^2 =72[/tex]

[tex]y^2 =36[/tex]

[tex]y =6[/tex]

substitute the value of y in the second equation and solve for z

[tex]z^2 = 6^2 + 9^2[/tex]

[tex]z^2 = 36 + 81[/tex]

[tex]z^2 = 117[/tex]

[tex]z = \sqrt{117}[/tex]

[tex]z =3\sqrt{13}[/tex]