Answer:
All events are independent
Step-by-step explanation:
You are given the table
[tex]\begin{array}{cccc}&\text{Chocolate}&\text{Vanilla}&\text{Total}\\\text{Adults}&0.21&0.39&0.60\\\text{Children}&0.14&0.26&0.40\\\text{Total}&0.35&0.65&1.00\end{array}[/tex]
Two events A and B are independent when
[tex]Pr(A\cap B)=Pr(A)\cdot Pr(B)[/tex]
a) A="Chocolate"
B="Adults"
A and B="Chocolate and Adults"
[tex]Pr(A)=0.35\\ \\Pr(B)=0.60\\ \\Pr(A\cap B)=0.21[/tex]
Since [tex]0.35\cdot 0.60=0.21[/tex] events are independent
b) A="Children"
B="Chocolate"
A and B="Children and Chocolate"
[tex]Pr(A)=0.40\\ \\Pr(B)=0.35\\ \\Pr(A\cap B)=0.14[/tex]
Since [tex]0.40\cdot 0.35=0.14[/tex] events are independent
c) A="Vanilla"
B="Children"
A and B="Vanilla and Children"
[tex]Pr(A)=0.65\\ \\Pr(B)=0.40\\ \\Pr(A\cap B)=0.26[/tex]
Since [tex]0.65\cdot 0.40=0.26[/tex] events are independent