Answer:
1.42 s
Explanation:
The equation for free fall of an object starting from rest is generally written as
[tex]s=\frac{1}{2}at^2[/tex]
where
s is the vertical distance covered
a is the acceleration due to gravity
t is the time
On this celestial body, the equation is
[tex]s=10.04 t^2[/tex]
this means that
[tex]\frac{1}{2}g = 10.04[/tex]
so the acceleration of gravity on the body is
[tex]g=2\cdot 10.04 = 20.08 m/s^2[/tex]
The velocity of an object in free fall starting from rest is given by
[tex]v=gt[/tex]
In this case,
g = 20.08 m/s^2
So the time taken to reach a velocity of
v = 28.6 m/s
is
[tex]t=\frac{v}{g}=\frac{28.6 m/s}{20.08 m/s^2}=1.42 s[/tex]