Answer:
Only choices B and C are correct.
Step-by-step explanation:
The square root parent function is [tex]f(x)= \sqrt{x}.[/tex]
The function [tex]f(x)[/tex] is not a linear function, therefore it's graph cannot be a straight line. This rules out choice A.
The function [tex]f(x)[/tex] is defined at [tex]x=0[/tex] because [tex]f(0)= \sqrt{0} =0[/tex]. This means that choice B is correct.
The function [tex]f(x)[/tex] is only real for values [tex]x\geq 0[/tex], because negative values of [tex]x[/tex] give complex values for [tex]f(x)[/tex]. This means that choice C is correct.
The function [tex]f(x)[/tex] can take only positive values which means it is confined to only the I quadrant, and is not defined in quadrants II, III, and IV. This rules out Choice D.
Therefore only choices B and C are correct.