What is the following product?

For this case we must find the product of the following expression:
[tex]\sqrt {12} * \sqrt {18}[/tex]
We combine using the product rule for radicals:
[tex]\sqrt [n] {a} * \sqrt [n] {b} = \sqrt [n] {ab}[/tex]
So, we have:
[tex]\sqrt {12 * 18} =\\\sqrt {216} =[/tex]
We rewrite the 216 as[tex]6 * 6 * 6 = 6 ^ 3 = 6 ^ 2 * 6[/tex]
[tex]\sqrt {6 ^ 2 * 6} =[/tex]
By definition of properties of powers and roots we have:
[tex]\sqrt [n] {a ^ n} = a ^ {\frac {n} {n}} = a[/tex]
Then, the expression is:
[tex]6 \sqrt {6}[/tex]
Answer:
Option D
ANSWER
[tex]6 \sqrt{6} [/tex]
EXPLANATION
The given product is
[tex] \sqrt{12} \times \sqrt{18} [/tex]
We rewrite to get;
[tex] \sqrt{4 \times 3} \times \sqrt{9 \times 2} [/tex]
We split the radical sign to get:
[tex]\sqrt{4 } \times \sqrt{3} \times \sqrt{9} \times \sqrt{2} [/tex]
The perfect squares simplifies to:
[tex]2\sqrt{3} \times 3 \sqrt{ 2} [/tex]
This gives us :
[tex]2 \times 3 \sqrt{3 \times 2} [/tex]
This simplifies to;
[tex]6 \sqrt{6} [/tex]