Respuesta :

r3t40

[tex]f(s)\Longrightarrow L^{-1}=\{\frac{-4s-9}{s^2+25-8}\}[/tex]

First dismantle,

[tex]L^{-1}=\{-\frac{4s}{s^2+25-8}-\frac{9}{s^2+25-8}\}[/tex]

Now use the linearity property of Inverse Laplace Transform which states,

For functions [tex]f(s),g(s)[/tex] and constants [tex]a, b[/tex] rule applies,

[tex]L^{-1}=\{a\cdot f(s)+b\cdot g(s)\}=aL^{-1}\{f(s)\}+bL^{-1}\{f(s)\}[/tex]

Hence,

[tex]-4L^{-1}\{\frac{s}{s^2+25-8}\}-9L^{-1}\{\frac{1}{s^2+25-8}\}[/tex]

The first part simplifies to,

[tex]

L^{-1}\{\frac{s}{s^2+25-8}\} \\

\frac{d}{dt}(\frac{1}{\sqrt{17}}\sin(t\sqrt{17})) \\

\cos(t\sqrt{17})

[/tex]

The second part simplifies to,

[tex]

L^{-1}\{\frac{1}{s^2+25-8}\} \\

\frac{1}{\sqrt{17}}\sin(t\sqrt{17})

[/tex]

And we result with,

[tex]\boxed{-4\cos(t\sqrt{17})-\frac{9}{\sqrt{17}}\sin(t\sqrt{17})}[/tex]

Hope this helps.

If you have any additional questions please ask. I made process of solving as quick as possible therefore you might be left over with some uncertainty.

Hope this helps.

r3t40