Respuesta :

The area of the circle is found using the formula Area = PI x r^2

The area of a triangle is found using the formula Area = 1/2 x base x height.

Using the given dimensions:

Area of the circle = 3.14 x 3.8^2 = 45.3416 square units.

The area of the triangle is 1/2 x 5 x 10 = 25 square units.

To find the area of the unshaded part, subtract the area of the shaded triangle from the circle:

Area = 45.3416 - 25 = 20.3416

Round to two decimal places = 20.34

The answer is D. 20.34

D. 20.34

In this case, we must calculate first the Areas of the Triangle ([tex]A_{t}[/tex]), in square units, and the Circle ([tex]A_{c}[/tex]), in square units, later we subtract the Area of the former from the Area of the latter to determine the Area of unshaded region ([tex]A_{u}[/tex]), in square units. The Area formulas for each figure are, respectively:

Triangle

[tex]A_{t} = \frac{1}{2}\cdot b\cdot h[/tex] (1)

Circle

[tex]A_{c} = \pi\cdot r^{2}[/tex] (2)

Unshaded Area

[tex]A_{u} = A_{c} - A_{t}[/tex] (3)

Where:

[tex]h[/tex] - Height of the triangle.

[tex]b[/tex] - Base of the triangle.

[tex]r[/tex] - Radius of the circle.

If we know that [tex]h = 10[/tex], [tex]b = 5[/tex] and [tex]r = 3.8[/tex], then the area of the unshaded region is:

[tex]A_{t} = \frac{1}{2}\cdot (5)\cdot (10)[/tex]

[tex]A_{t} = 25[/tex]

[tex]A_{c} = \pi\cdot 3.8^{2}[/tex]

[tex]A_{c} \approx 45.365[/tex]

[tex]A_{u} = 45.365-25[/tex]

[tex]A_{u} = 20.365[/tex]

The correct answer is D.

Please see this question related to Area problems: https://brainly.com/question/16151549