Respuesta :

gmany

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

We ahve the slope m = 1/2 and the point (-2, 1). Substitute:

[tex]y-1=\dfrac{1}{2}(x-(-2))[/tex]

[tex]y-1=\dfrac{1}{2}(x+2)[/tex] - point-slope form

Covert to the slope-intercept form (y = mx + b):

[tex]y-1=\dfrac{1}{2}(x+2)[/tex]          use the distributive property

[tex]y-1=\dfrac{1}{2}x+1[/tex]          add 1 to both sides

[tex]y=\dfrac{1}{2}x+2[/tex]   - slope-intercept form

Convert to the standard form (Ax + By = C):

[tex]y=\dfrac{1}{2}x+2[/tex]     multiply both sides by 2

[tex]2y=x+4[/tex]        subtract x from both sides

[tex]-x+2y=4[/tex]         change the signs

[tex]x-2y=-4[/tex]   -  standard form

Convert to the general form (Ax+By+C=0):

[tex]x-2y=-4[/tex]        add 4 to both sides

[tex]x-2y+4=0[/tex]   - general form