what is the total surface area of the rectangular pyramid below

Answer:
Step-by-step explanation:
We have
the rectangle 12ft × 6ft
two triangles with the base b = 12ft and the height h = 8ft
two triangles with the base b = 6ft and the height h = 9.5ft.
The formula of an area of a rectangle l × w:
[tex]A=lw[/tex]
Substitute:
[tex]A_1=(12)(6)=72\ dt^2[/tex]
The formula of an area of a triangle:
[tex]A=\dfrac{bh}{2}[/tex]
Substitute:
[tex]A_2=\dfrac{(12)(8)}{2}=48\ ft^2[/tex]
[tex]A_3=\dfrac{(6)(9.5)}{2}=28.5\ ft^2[/tex]
The Surface Area:
[tex]S.A.=A_1+2A_2+2A_3[/tex]
Substitute:
[tex]S.A.=72+2(48)+2(28.5)=225\ ft^2[/tex]
Answer:
Total surface area of the pyramid = 225 ft²
Step-by-step explanation:
Total surface area of the given pyramid is defined by
(Area of rectangular base) + 2(area of two triangular sides with height 8 ft and base 12 ft) + 2(area of two triangles with height 9.5 ft and base 6 ft)
Total surface area = (12×6) + 2[[tex]\frac{1}{2}\times(h)(b)[/tex]]+2[[tex]\frac{1}{2}\times(h')(b')[/tex]]
= 72 + 2[[tex]\frac{1}{2}\times(8)(12)[/tex]]+2[[tex]\frac{1}{2}\times(9.5)(6)[/tex]]
= 72 + 96 + 57
= 225 ft²
Therefore, total surface area of the pyramid is 225 ft²