Answer:
The minimum value of wall thickness t=3.63 mm.
Explanation:
Given:
D=200 mm
P=4 MPa
t= Wall thickness
maximum shear stress=27.5 MPa
We know that
hoop stress [tex]\sigma _{h}=\frac{Pd}{2t}[/tex]
Longitudinal stress [tex]\sigma _{l}=\frac{Pd}{4t}[/tex]
So maximum shear tress in plane[tex]\tau _{max}=\dfrac{\sigma _h-\sigma _l}{2}[/tex]
[tex]\tau _{max}=\dfrac{Pd}{8t}[/tex]
Now by putting the value
[tex]27.5=\dfrac{4\times 200}{8t}[/tex]
So t=3.36 mm
The minimum value of wall thickness t=3.63 mm.