Complete the square for the following quadratic equation to determine its solutions and the location of its extreme value
y = -x + 4x + 12
A
x=2 + 277
extreme value at (2.16)
B.
X = -2,6
extreme value at (2,12)
C.
x = -2.6
extreme value at (2.16)
D. X = 2 + 277
extreme value at (2,12)

Respuesta :

Answer:

Option C. x = -2,6  extreme value at (2.16)

Step-by-step explanation:

we have

[tex]y=-x^2+4x+12[/tex]

This is the equation of a vertical parabola open down

The vertex is a maximum (extreme value)

Convert the equation into vertex form

[tex]y=-x^2+4x+12[/tex]

Complete the square

Group terms that contain the same variable and move the constant term to the left side

[tex]y-12=-x^2+4x[/tex]

Factor -1

[tex]y-12=-(x^2-4x)[/tex]

Remember to balance the equation by adding the same constants to each side.

[tex]y-12-4=-(x^2-4x+4)[/tex]

Rewrite as perfect squares

[tex]y-16=-(x-2)^2[/tex]

[tex]y=-(x-2)^2+16[/tex] -----> equation of the parabola in vertex form

The vertex is the point (2,16) ----> is a maximum (extreme value)

Determine the solutions of the quadratic equation

For y=0

[tex]0=-(x-2)^2+16[/tex]

[tex](x-2)^2=16[/tex]

square root both sides

[tex](x-2)=(+/-)4[/tex]

[tex]x=2(+/-)4[/tex]

[tex]x=2(+)4=6[/tex]

[tex]x=2(-)4=-2[/tex]

therefore

The solutions are x=-2 and x=6

The extreme value is (2,16)