Using the disk method, the volume is
[tex]\displaystyle\pi\int_0^\infty e^{-2x}\,\mathrm dx=\boxed{\frac\pi2}[/tex]
Alternatively, using the shell method, the volume is
[tex]\displaystyle2\pi\int_0^1y(-\ln y)\,\mathrm dy=\frac\pi2[/tex]
Using the shell method, the volume is
[tex]\displaystyle2\pi\int_0^\infty xe^{-x}\,\mathrm dx=\boxed{2\pi}[/tex]
Alternatively, using the disk method, the volume is
[tex]\displaystyle\pi\int_0^1(-\ln x)^2\,\mathrm dx=2\pi[/tex]