One triangle has the hypotenuse of 26 and the shortest side is 10, what is the other side?

a. 22
b. 25
c. 24
d. 23

Respuesta :

Answer:

C. 24

Step-by-step explanation:

In a right triangle, the sum of the squares of the two legs of the triangle is equivalent to the square of the  hypotenuse.

a²+b²=c²

a=10

b=?

c=26

Let us substitute with the values given in the question.

10²+b²=26²

100+b²=676

b²=676-100

b²=576

b=√576

=24

The other leg of the triangle is 24 units long.

Answer: option c.

Step-by-step explanation:

You need to use the Pythagorean Theorem. This is:

[tex]a^2=b^2+c^2[/tex]

Where "a" is the hypotenuse and "b" and "c" are legs of the triangle.

In this case you know that:

[tex]a=26\\b=10[/tex]

Then, you need  to substitute values into  [tex]a^2=b^2+c^2[/tex] and then solve for "c".

So, this is:

[tex]26^2=10^2+c^2\\\\26^2-10^2=c^2\\\\576=c^2\\\\\sqrt{576}=c\\\\c=24[/tex]