HELP


Write the explicit formula for the data.


Write a recursive rule for the height of the ball on each successive bounce.

If this ball is dropped from a height of 175 cm, how many times does it bounce before it has a bounce height of less than 8 cm? Use the same rebound percentage as in the previous problem.

What is the height of the fourth bounce of this ball if it is dropped from a height of 250 cm? Use the same rebound percentage as in the previous problem.

HELPWrite the explicit formula for the dataWrite a recursive rule for the height of the ball on each successive bounceIf this ball is dropped from a height of 1 class=

Respuesta :

Answer:

Step-by-step explanation:

This is a geometric sequence so the standard formula for a recursive geometric sequence is

[tex]a_{n}=a_{0}*r^{n-1}[/tex]

We know the heights and the number of bounces needed to achieve that height, but in order to write the recursive formula we need r.

The value of r is found by dividing each value of a bounce by the one before it.  In other words, bounce 1 divided by the starting height gives a value of r=240/300 so r = .8

Bounce 2 divided by bounce 1: 192/240 = .8

So r = .8

Therefore, the formula is

[tex]a_{n}=a_{0}(.8)^{n-1)[/tex] where

aₙ is the height of the ball after the nth bounce,

a₀ is the starting height of the ball,

.8 is the rebound percentage, and

n-1 is the number of bounces minus 1

The first problem basically asks us to find n when the starting height is 175 and the bounce height is less than 8.  I used 7.  Here is the formula filled in with our info:

[tex]7=175(.8)^{n-1}[/tex]

and we need to solve for n.  That requires that we take the natural log of both sides.  Here are the steps:

First, divide both sides by 175 to get

[tex].04=(.8)^{n-1}[/tex]

Next, take the natural log of both sides:

[tex]ln(.04)=ln((.8)^{n-1})[/tex]

The power rule of logs says that we can bring the exponent down in front of the log:

[tex]ln(.04)=n-1(ln(.8))[/tex]

Finding the natural logs of those decimals gives us:

[tex]-3.218876=-.223144(n-1)[/tex]

Divide both sides by -.223144 to get your n-1 value:

n - 1 = 14.4251067

That means that, since the ball is not bouncing 14.425 times, it bounces 14 times to achieve a height less than 8.  Let's see how much less than 8 by checking our answer.  To do this, we will solve for aₙ when x = 14:

[tex]a_{n}=175(.8)^{14}[/tex]

This gives us a height at bounce 14 of 7.697 cm, just under 8!

Now for the next part, we want to use a starting value of 250 and .8 as the rebound height.  We want to find a₄, the height of the 4th bounce.

[tex]a_{4}=250(.8)^{4-1}[/tex]

which simplifies to

[tex]a_{4}=250(.8)^3[/tex]

Do the math on that to find the height of the 4th bounce from a starting height of 250 cm is 128 cm

Answer:

First case

   Recursive formula: [tex]h_n = 0.8 \times h_{n-1}[/tex]

   Explicit formula: [tex]h_n = 300 \times 0.8^{n-1}[/tex]

Second case: 15 bounces are needed

Third case: 128 cm

Step-by-step explanation:

Let's call h to he height of the ball

From the table, the rate is computed as follows:

r = 240/300 = 192/240 = 153.6/192 =  122.88/153.6 = 98.3/122.88 = 0.8

Which means this is a geometric sequence (all quotients are equal).

Recursive formula:

[tex]h_0 = 300[/tex]

[tex]h_n = r \times h_{n-1}[/tex]

[tex]h_n = 0.8 \times h_{n-1}[/tex]

where n refers to the number of bounces

Explicit formula:

[tex]h_n = h_0 \times r^{n-1}[/tex]

[tex]h_n = 300 \times 0.8^{n-1}[/tex]

If this ball is dropped from a height of 175 cm, then

[tex]h_n = 175 \times 0.8^{n-1}[/tex]

If the height must be 8 cm or less:

[tex]8 = 175 \times 0.8^{n-1}[/tex]

[tex]8/175 = 0.8^{n-1}[/tex]

[tex]ln(8/175) = (n-1) ln(0.8)[/tex]

[tex]n = 1 + \frac{ln(8/175)}{ln(0.8)}[/tex]

[tex]n = 14.83[/tex]

which means that 15 bounces are needed.

If this ball is dropped from a height of 250 cm, then

[tex]h_n = 250 \times 0.8^{n-1}[/tex]

For the fourth bounce the height will be:

[tex]h_4 = 250 \times 0.8^{4-1}[/tex]

[tex]h_4 = 128[/tex]