Suppose I launch a charged particle into a uniform magnetic field. The particle will trace out a circular path in the field. Which of the following changes will decrease the radius of the circular path? Decrease the strength of the magnetic field Increase the mass of the particle Increase the charge on the particle Increase the volume of the particle Increase the speed of the particle

Respuesta :

Answer:

increase the charge

Explanation:

The force acting on charge particle when moving perpendicular to the magnetic field

F = q v B

The centripetal force is given by

F =  mv^2 / r

Comparing both, we get

r = m v / B q

That means the radius of the circular path depends on mass of the charge particle, velocity of the charge particle, magnetic field strength and charge of the particle.

To decrease the radius:

1. increase the charge

2. increase the magnetic field strength

3. decrease the speed

4. decrease the mass

The factor that will decrease the radius of the circular path is increase the charge on the particle.

Magnetic force on the charged particle

The magnetic force on the charged particle is calculated as follows;

F = qvB

Where;

  • q is the charge
  • v is the velocity of the charge
  • B is magnetic field

Centripetal force on the charged particle

The force on the particle moving in circular path is given as;

F = mv²/r

qvB = mv²/r

qB = mv/r

r = mv/qB

Thus, the factor that will decrease the radius of the circular path is increase the charge on the particle.

Learn more about magnetic force here: https://brainly.com/question/13277365