Assume the readings on thermometers are normally distributed with a mean of 0degreesC and a standard deviation of 1.00degreesC. Find the probability that a randomly selected thermometer reads between negative 1.52 and negative 0.81 and draw a sketch of the region.

Respuesta :

Answer:

Step-by-step explanation:

Given : The readings on thermometers are normally distributed with

Mean : [tex]\mu=\ 0[/tex]

Standard deviation : [tex]\sigma= 1[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = -1.52

[tex]z=\dfrac{-1.52-0}{1}=-1.52[/tex]

For x = -0.81

[tex]z=\dfrac{-0.81-0}{1}=-0.81[/tex]

The p-value = [tex]P(-1.52<z<-0.81)=P(z<-0.81)-P(z<-1.52)[/tex]

[tex]0.2089701-0.0642555=0.1447146\approx0.1447[/tex]

Hence, the probability that a randomly selected thermometer reads between negative 1.52 and negative 0.81 = 0.1447

Ver imagen JeanaShupp