Answer:
Step-by-step explanation:
Given : The readings on thermometers are normally distributed with
Mean : [tex]\mu=\ 0[/tex]
Standard deviation : [tex]\sigma= 1[/tex]
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x = -1.52
[tex]z=\dfrac{-1.52-0}{1}=-1.52[/tex]
For x = -0.81
[tex]z=\dfrac{-0.81-0}{1}=-0.81[/tex]
The p-value = [tex]P(-1.52<z<-0.81)=P(z<-0.81)-P(z<-1.52)[/tex]
[tex]0.2089701-0.0642555=0.1447146\approx0.1447[/tex]
Hence, the probability that a randomly selected thermometer reads between negative 1.52 and negative 0.81 = 0.1447