A circular plate with diameter of 20 cm is placed over a fixed bottom plate with a 1 mm gap between two plates filled with Kerosene at 40 degree C, shown in the following figure. Find the torque needed to rotate the top plate at 5 rad/s. The velocity distribution in the gap is linear and the shear stress on the edge of the rotating plate can be neglected.

Respuesta :

Answer:

T = 1.17 x [tex]10^{-3}[/tex] N-m

Explanation:

Given :

Gap between the two plates , dy = 1 mm

                                                  dy = 1 x [tex]10^{-3}[/tex] m

Angular velocity of the top plate , ω = 5 rad/s

Diameter of the plate, D = 20 cm

Radius of the plate, R = 10 cm

                                    = 0.1 m

Temperature of the kerosene = 40°C

Viscosity of kerosene at 40°C = 0.0015 Pa-s

Now let us take a small elemental ring of thickness dr at a radius r.

Therefore, area of this elemental ring of dr = 2πrdr

Now linear velocity at radius r = ω x r

                                                   5r m/s

Now applying Newtons law of viscosity we get,

Shear stress, τ = μ.[tex]\frac{du}{dy}[/tex]

   [tex]\Rightarrow \frac{F_{s}}{A}=\mu .\frac{du}{dy}[/tex]

  [tex]\Rightarrow \frac{F_{s}}{A}=\mu .\frac{5r-0}{1\times 10^{-3}}[/tex]

  [tex]\Rightarrow \frac{F_{s}}{A}=\mu \times 10^{3}\times 5r[/tex]

  [tex]F_{s}=\mu \times 10^{3}\times 5r\times 2\pi rdr[/tex]

  [tex]F_{s}=5 \times 10^{3}\times \mu \times r\times 2\pi rdr[/tex]

  [tex]F_{s}=\frac{18849}{400}\times r^{2}dr[/tex]

Now we know torque due to small strip,

 dT = [tex]F_{s}[/tex] x r

 dT = [tex]\frac{18849}{400}\times r^{3}dr[/tex]

Therefore total torque for r=0 to r=R can be calculated. So by integrating,

[tex]\int dT=\int_{0}^{R}\frac{18849}{400}\times r^{3}dr[/tex]

[tex]T = \frac{18849}{400}\times \frac{R^{4}}{4}[/tex]

[tex]T = 47.1225\times \frac{0.1^{4}}{4}[/tex]

T = 1.17 x [tex]10^{-3}[/tex] N-m