Answer:
[tex]\large\boxed{(x-3)(2x^2-5x+1)=2x^3-11x^2+16x-3}[/tex]
Step-by-step explanation:
Use the distributive property: a(b + c) = ab + ac:
[tex](x-3)(2x^2-5x+1)=(x-3)(2x^2)+(x-3)(-5x)+(x-3)(1)\\\\=(x)(2x^2)+(-3)(2x^2)+(x)(-5x)+(-3)(-5x)+x-3\\\\=2x^3-6x^2-5x^2+15x+x-3\qquad\text{combine like terms}\\\\=2x^3+(-6x^2-5x^2)+(15x+x)-3\\\\=2x^3-11x^2+16x-3[/tex]