contestada

A hoop of mass 2 kg, radius 0.5 m is rotating about its center with an angular speed of 3 rad's. A force of 10N is applied tangentially at the rim (a) Determine the rotational kinetic energy oh the hoop (b) What is instantaneous change rate of the kinetic energy?

Respuesta :

Answer:

The rotational kinetic energy of the hoop and the instantaneous change rate of the kinetic energy are 2.25 J and 15 J.

Explanation:

Given that,

Mass = 2 kg

Radius = 0.5 m

Angular speed = 3 rad/s

Force = 10 N

(I). We need to calculate the rotational kinetic energy

Using formula of kinetic energy

[tex]K.E =\dfrac{1}{2}\timesI\omega^2[/tex]

[tex]K.E=\dfrac{1}{2}\times mr^2\times\omega^2[/tex]

[tex]K.E=\dfrac{1}{2}\times2\times(0.5)^2\times(3)^2[/tex]

[tex]K.E=2.25\ J[/tex]

(II). We need to calculate the instantaneous change rate of the kinetic energy

Using formula of kinetic energy

[tex]K.E=\dfrac{1}{2}mv^2[/tex]

On differentiating

[tex]\dfrac{K.E}{dt}=\dfrac{1}{2}m\times2v\times\dfrac{dv}{dt}[/tex]

[tex]\dfrac{K.T}{dt}=mva[/tex]....(I)

Using newton's second law

[tex]F = ma[/tex]

[tex]a= \dfrac{F}{m}[/tex]

[tex]a=\dfrac{10}{2}[/tex]

[tex]a=5 m/s^2[/tex]

Put the value of a in equation (I)

[tex]\dfrac{K.E}{dt}=mva[/tex]

[tex]\dfrac{K.E}{dt}=mr\omega a[/tex]

[tex]\dfrac{K.E}{dt}=2\times0.5\times3\times5[/tex]

[tex]\dfrac{K.E}{dt}=15\ J/s[/tex]

Hence, The rotational kinetic energy of the hoop and the instantaneous change rate of the kinetic energy are 2.25 J and 15 J.