A hollow steel shaft with and outside diameter of (do)-420 mm and an inside diameter of (di) 350 mm is subjected to a torque of 300 KNm, as shown. The modulus of rigidity G for the steel is 80 GPa. Determine: (a) The maximum shearing stress in the shaft. (b) The shearing stress on a traverse cross section at the inside surface of the shaft (c) The magnitude of the angle of twist for a (L) -2.5 m length.

Respuesta :

Answer:

a.  [tex]\tau=51.55 MPa[/tex]

b.[tex]\tau=42.95MPa[/tex]

c.[tex]\theta=7.67\times 10^{-3}[/tex] rad.

Explanation:

Given: [tex]D_i=350 mm,D_o=420 mm,T=300 KN-m ,G=80 G Pa [/tex]

We know that

[tex]\dfrac{\tau}{J}=\dfrac{T}{r}=\dfrac{G\theta}{L}[/tex]

J for hollow shaft [tex]J=\dfrac{\pi (D_o^4-D_i^4)}{64}[/tex]

(a)

 Maximum shear stress [tex]\tau =\dfrac{16T}{\pi Do^3(1-K^4)}[/tex]

      [tex]K=\dfrac{D_i}{D_o}[/tex]⇒K=0.83

[tex]\tau =\dfrac{16\times 300\times 1000}{\pi\times 0.42^3(1-.88^4)}[/tex]

   [tex]\tau=51.55 MPa[/tex]

(b)

We know that [tex]\tau \alpha r[/tex]

So [tex]\dfrac{\tau_{max}}{\tau}=\dfrac{R_o}{r}[/tex]

[tex]\dfrac{51.55}{\tau}=\dfrac{210}{175}[/tex]

[tex]\tau=42.95MPa[/tex]

(c)

[tex]\dfrac{\tau_{max}}{R_{max}}=\dfrac{G\theta }{L}[/tex]

[tex]\dfrac{51.55}{210}=\dfrac{80\times 10^3\theta }{2500}[/tex]

[tex]\theta=7.67\times 10^{-3}[/tex] rad.

Otras preguntas