A long solenoid, of radius a, is driven by an alternating current, so that the field inside is sinusoidal: B(t) B cos(ot)ż. A circular loop of wire, of radius a/2 and resistance R, is placed inside the solenoid, and coaxial with it. Find the current induced in the loop, as a function of time. 6.

Respuesta :

Answer:

The current induced in the loop is [tex]\dfrac{\pi a^2 B\omega}{4R}\ \sin(\omega t)[/tex].

Explanation:

Given that,

Magnetic field [tex]B(t)=B\cos(\omega t)\ z[/tex]

Radius [tex]r =\dfrac{a}{2}[/tex]

Resistance =R

We need to calculate the area of the loop

Using formula of area

[tex]A = \pi r^2[/tex]

Put the value of r in to the formula

[tex]A =\pi\times(\dfrac{a}{2})^2[/tex]

[tex]A=\dfrac{\pi a^2}{4}[/tex]

We need to calculate the flux

Using formula of flux

[tex]\phi=BA[/tex]

[tex]\phi=B\cos(\omega t)\dfrac{\pi a^2}{2}[/tex]

We need to calculate the emf

Using formula of emf

[tex]\epsilon=-\dfrac{d\phi}{dt}[/tex]

[tex]\epsilon=-\dfrac{-\pi a^2B}{4}(-\omega\sin\omega t)[/tex]

[tex]\epsilon=\dfrac{\pi a^2B\omega\sin(\omega t)}{4}[/tex]

We need to calculate the current

Using formula of current

[tex]I(t)=\dfrac{\epsilon}{R}[/tex]

[tex]I(t)=\dfrac{\dfrac{\pi a^2B\omega\sin(\omega t)}{4}}{R}[/tex]

[tex]I(t)=\dfrac{\pi a^2 B\omega}{4R}\ \sin(\omega t)[/tex]

Hence, The current induced in the loop is [tex]\dfrac{\pi a^2 B\omega}{4R}\ \sin(\omega t)[/tex].