Answer:
The cylinder’s total kinetic energy is 1.918 J.
Explanation:
Given that,
Mass = 4.1 kg
Radius = 0.057 m
Speed = 0.79 m/s
We need to calculate the linear kinetic energy
Using formula of linear kinetic energy
[tex]K.E_{l}=\dfrac{1}{2}mv^2[/tex]
[tex]K.E_{l}=\dfrac{1}{2}\times4.1\times(0.79)^2[/tex]
[tex]K.E_{l}=1.279\ J[/tex]
We need to calculate the rotational kinetic energy
[tex]K.E_{r}=\dfrac{1}{2}\times I\omega^2[/tex]
[tex]K.E_{r}=\dfrac{1}{2}\times\dfrac{1}{2}\times mr^2\times(\dfrac{v}{r})^2[/tex]
[tex]K.E_{r}=\dfrac{1}{4}\times m\times v^2[/tex]
[tex]K.E_{r}=\dfrac{1}{4}\times4.1\times(0.79)^2[/tex]
[tex]K.E_{r}=0.639\ J[/tex]
The total kinetic energy is given by
[tex]K.E=K.E_{l}+K.E_{r}[/tex]
[tex]K.E=1.279+0.639[/tex]
[tex]K.E=1.918\ J[/tex]
Hence, The cylinder’s total kinetic energy is 1.918 J.