Answer:
(a)[tex]s_2-s_1[/tex]= -0.098 KJ/kg-K
(b)P= 29.8 KW
(c) [tex]S_{gen}[/tex]= -0.098 KW/K
Explanation:
[tex]V_1=1m^3/kg,V_2=0.71m^3/kg,[/tex] mass flow rate= 1 kg/s.
T=25°C
Air treating as ideal gas
(a)
We know that entropy change for ideal gas between two states
[tex]s_2-s_1=mC_v\ln \frac{T_2}{T_1}+mR\ln \frac{V_2}{V_1}[/tex]
Given that this is isothermal process so
[tex]s_2-s_1=mR\ln \frac{V_2}{V_1}[/tex]
[tex]s_2-s_1=1\times 0.287\ln \frac{0.71}{1}[/tex]
[tex]s_2-s_1[/tex]= -0.098 KJ/kg-K
(b)
Power required
[tex]P=\dot{m}T\Delta S[/tex]
[tex]P=1\times (273+25)(s_2-s_1)[/tex]
[tex]P=1\times (273+25)(-0.098)[/tex]
P= -29.8 KW (Negative sign means it is compression process.)
(c)
Rate of entropy generation [tex]S_{gen}[/tex]
[tex]S_{gen}=\dot{m}T\Delta S[/tex]
[tex]S_{gen}[/tex]=1(-0.098)
[tex]S_{gen}[/tex]= -0.098 KW/K