Answer : The activation energy for the reaction is, 1.151 KJ
Explanation :
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]737^oC[/tex] = [tex]0.0796M^{-1}s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at [tex]947^oC[/tex] = [tex]0.0815M^{-1}s^{-1}[/tex]
[tex]Ea[/tex] = activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = [tex]737^oC=273+737=1010K[/tex]
[tex]T_2[/tex] = final temperature = [tex]947^oC=273+947=1220K[/tex]
Now put all the given values in this formula, we get:
[tex]\log (\frac{0.0815M^{-1}s^{-1}}{0.0796M^{-1}s^{-1}})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{1010K}-\frac{1}{1220K}][/tex]
[tex]Ea=1151.072J/mole=1.151KJ[/tex]
Therefore, the activation energy for the reaction is, 1.151 KJ