Respuesta :

Answer:

Step-by-step explanation:

Using linear differential equation method:

\frac{\mathrm{d} y}{\mathrm{d} x}+3y=e^5^x

I.F.= [tex]e^{\int {Q} \, dx }[/tex]

I.F.=[tex]e^{\int {3} \, dx }[/tex]

I.F.=[tex]e^{3x}[/tex]

y(x)=[tex]\frac{1}{e^{3x}}[\int {e^{5x}} \, dx+c][/tex]

y(x)=[tex]\frac{e^{2x}}{5}+e^{-3x}\times c[/tex]

substituting x=2

c=[tex]\frac{25-e^4}{5e^{-6}}[/tex]

Now

y=[tex]\frac{e^{2x}}{5}+e^{-3x}\times \frac{25-e^4}{5e^{-6}}[/tex]