Answer:
[tex]h_2-h_1=6\times 10^{-3}\frac{KJ}{Kg}[/tex]
Explanation:
Now from first law for open system
[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w[/tex]
Here given Q=0 ,w=0
So [tex]h_1+\dfrac{V_1^2}{2}=h_2+\dfrac{V_2^2}{2}[/tex]
[tex]V_1=4 m/s,V_2=2 m/s[/tex]
[tex]h_1+\dfrac{4^2}{2000}=h_2+\dfrac{2^2}{2000}[/tex]
[tex]h_2-h_1=6\times 10^{-3}[/tex]
So increase in specific enthalpy
[tex]h_2-h_1=6\times 10^{-3}\frac{KJ}{Kg}[/tex]