Respuesta :
V=LWH=20
L is 5 more than W
V=5+W
H is 1 less than W
H=-1+W
easy, sub 5+W for L and -1+W for H in LWH=V=20
20=(5+W)(W)(-1+W)
expand
20=W^3+4W^2-5W
minus 20 both sides
W^3+4W^2-5W-20=0
either factor or graph to find the possible values for W
(W+4)(W^2-5)=0
set each to zero
W+4=0
W=-4
impossible, measures cannot be negative
W^2-5=0
add 5
W^2=5
sqrt both sides
W=√5
sub back
L=5+W
L=5+√5
aprox
7.24 rounded
H=-1+W
H=-1+√5
aprox
1.24 rounded
the dimentions are
√5 by (5+√5) by (-1+√5) or aprox
2.24in by 7.24in by 1.24in
L is 5 more than W
V=5+W
H is 1 less than W
H=-1+W
easy, sub 5+W for L and -1+W for H in LWH=V=20
20=(5+W)(W)(-1+W)
expand
20=W^3+4W^2-5W
minus 20 both sides
W^3+4W^2-5W-20=0
either factor or graph to find the possible values for W
(W+4)(W^2-5)=0
set each to zero
W+4=0
W=-4
impossible, measures cannot be negative
W^2-5=0
add 5
W^2=5
sqrt both sides
W=√5
sub back
L=5+W
L=5+√5
aprox
7.24 rounded
H=-1+W
H=-1+√5
aprox
1.24 rounded
the dimentions are
√5 by (5+√5) by (-1+√5) or aprox
2.24in by 7.24in by 1.24in
Answer:
Width =√5,length =√5+5 ,Depth =√5-1.
Step-by-step explanation:
volume of box = l.w.h ,where l is length ,w is width and h is the depth of the box.
It is given l= w+5
h= w-1.
Substituting l and h values we have
V= (w+5).w.(w-1)
Or 20 = w(w+5)(w-1) [ volume is 20 cubic in)
[tex]20 =w(w^{2} +4w-5)[/tex]
[tex]20=w^{3} +4w^{2} -5w[/tex]
or,[tex]w^{3} +4w^{2} -5w-20=0[/tex]
Taking common factor of both pairs we have:
[tex]w^{2} (w+4)-5(w+4)=0[/tex]
[tex](w^{2} -5)((w+4)=0[/tex]
[tex]w^{2} -5=0[/tex] or w+4=0
w=±√5 or w=-w
Length can not be negative so
w=√5
l=w+5=√5+5
h=w-1=√5-1