Respuesta :

Answer:

16π

Step-by-step explanation:

Area of the larger circle:

πr²

π(5)²

25π

Area of the smaller circle:

πr²

π(3)²

Subtract the two:

25π-9π=16π

For this case we have that the area of the shaded region is given by the subtraction of areas of both circles. That is to say:[tex]A_ {s} = \pi * (r_ {1}) ^ 2- \pi * (r_ {2}) ^ 2[/tex]

Where:

[tex]r_ {1}:[/tex] It is the radius of the major circle

[tex]r_ {2}[/tex]: It is the radius of the smaller circle

According to the data we have:

[tex]A_ {s} = \pi * (5) ^ 2- \pi * (3) ^ 2\\A_ {s} = \pi * 25- \pi * 9\\A_ {s} = 16 \pi[/tex]

Taking [tex]\pi = 3.14[/tex]

[tex]A_ {s} = 50.24[/tex]

So, the area of the shaded region is [tex]50.24 \ cm ^ 2[/tex]

Answer:

[tex]50.24 \ cm ^ 2[/tex]