Given f(x) = 3 - sin(πx/3)
a. sketch the graph of f(x)
b. find the period of f(x).
c. compute the max value of f(x)
d. what is the smallest positive x for which f(x) is a maximum?

Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

A. The graph of the function [tex]f(x)=3-\sin \dfrac{\pi x}{3}[/tex] is shown in attached diagram.

B. The period of the function [tex]f(x)=3-\sin \dfrac{\pi x}{3}[/tex] is

[tex]T=\dfrac{2\pi}{\frac{\pi}{3}}=6.[/tex]

C. The values of [tex]\sin \dfrac{\pi x}{3}[/tex] are [tex][-1,1],[/tex] so the maximum value of the function [tex]f(x)=3-\sin \dfrac{\pi x}{3}[/tex] is

[tex]3-(-1)=4.[/tex]

D. The smallest positive x for which f(x) is maximum is x=4.5 (black point on the graph).

Ver imagen frika