Respuesta :

Answer:

[tex]a_1=1.04[/tex]

Step-by-step explanation:

We have a geometric  sequence with:

[tex]Sn = 89,800[/tex], [tex]r = 3.4[/tex], and [tex]n = 10[/tex]

Where

Sn is the sum of the sequence

r is the common ratio

[tex]a_1[/tex] is the first term in the sequence

n is the number of terms in the sequence

The formula to calculate the sum of a finite geometric sequence is:

[tex]S_n=\frac{a_1(1-r^n)}{1-r}[/tex]

Then:

[tex]89,800=\frac{a_1(1-(3.4)^{10})}{1-3.4}[/tex]

Now we solve for [tex]a_1[/tex]

[tex]89,800(1-3.4)=a_1(1-(3.4)^{10})[/tex]

[tex]a_1=\frac{89,800(1-3.4)}{1-(3.4)^{10}}\\\\a_1=1.04[/tex]

Answer:

a1=1.04

Step-by-step explanation: