plźzzz help me ... I'll give brainliest
solve this and PLZ show all the steps
[tex]2 { \tan }^{ - 1} x \: + { \tan }^{ - 1} (x + 1) = \frac{\pi}{2} [/tex]

Respuesta :

Answer:

[tex]\displaystyle x = \frac{1}{3}[/tex].

Step-by-step explanation:

Consider the double angle identity for tangents:

[tex]\displaystyle \tan(2\theta) = \frac{2\tan{\theta}}{1 - \tan^{2}{\theta}}[/tex].

Also, for two complementary angles,

[tex]\displaystyle \tan{\left(\frac{\pi}{2} - \theta \right)} = \frac{1}{\tan{\theta}}[/tex].

Subtract [tex]\tan^{-1}(x + 1)[/tex] from both sides of this equation:

[tex]\displaystyle 2\tan^{-1}{x} = \frac{\pi}{2} + (-\tan^{-1}(x + 1))[/tex].

Take the tangent of both sides of this equation:

[tex]\displaystyle \tan(2\tan^{-1}{x}) = \tan\left(\frac{\pi}{2} -\tan^{-1}\left(x + 1\right)\right)[/tex].

Apply the double-angle identity to the left-hand side of this equation:

[tex]\displaystyle \tan(2\tan^{-1}{x}) \implies \frac{2\tan(\tan^{-1}x)}{1 - \tan^{2}(\tan^{-1}x)}\implies \frac{2x}{1 - x^{2}}[/tex].

The two angles [tex]\displaystyle \left(\frac{\pi}{2} + (-\tan^{-1}\left(x + 1\right))\right)[/tex] and [tex](x - 1)[/tex] are complementary. Therefore, for the right-hand side of this equation,

[tex]\displaystyle \tan\left(\frac{\pi}{2} -\tan^{-1}\left(x + 1\right)\right)\implies \frac{1}{\tan(\tan^{-1}(x + 1))} \implies \frac{1}{x + 1}[/tex].

Equate the two sides of this equation:

[tex]\begin{aligned} & \frac{2x}{1 - x^{2}} = \frac{1}{x + 1}\\ \implies & \frac{2x}{(1 - x)(1 + x)} = \frac{1}{1 + x}\\\implies & 2x = 1 - x,\; x \ne 1,\; x \ne -1\\\implies & x = \frac{1}{3}\end{aligned}[/tex].

Otras preguntas