Respuesta :
Answer:
6 lb.
Step-by-step explanation:
The average weight = sum of all the weights / number of packages
= (2+5+7+5+9+8) / 6
= 36/6
= 6 lb.
Answer: 6 lb
Step-by-step explanation:
The formula to calculate the average of n elements
[tex]X_1, X_2, X_3, X_4,..., X_n[/tex] is:
[tex]{\displaystyle {\overline {X}}}=\frac{\sum_{n=1}^{n}X_n}{n}[/tex]
In this case we have the weight of six packages
2 lb, 5 lb, 7 lb, 5 lb, 9 lb, and 8 lb
Notice that n = 6
So the average weight is:
[tex]{\displaystyle {\overline {X}}}=\frac{2+5+7+5+9+8}{6}[/tex]
[tex]{\displaystyle {\overline {X}}}=\frac{36}{6}[/tex]
Finally the average weight of the packages is:
[tex]{\displaystyle {\overline {X}}}=6\ lb[/tex]