Respuesta :

Answer:

6 lb.

Step-by-step explanation:

The average weight = sum of all the weights / number of packages

= (2+5+7+5+9+8) /  6

=  36/6

= 6 lb.

Answer:   6 lb

Step-by-step explanation:

The formula to calculate the average  of n elements

[tex]X_1, X_2, X_3, X_4,..., X_n[/tex] is:

[tex]{\displaystyle {\overline {X}}}=\frac{\sum_{n=1}^{n}X_n}{n}[/tex]

In this case we have the weight of six packages

2 lb, 5 lb, 7 lb, 5 lb, 9 lb, and 8 lb

Notice that n = 6

So the average weight is:

[tex]{\displaystyle {\overline {X}}}=\frac{2+5+7+5+9+8}{6}[/tex]

[tex]{\displaystyle {\overline {X}}}=\frac{36}{6}[/tex]

Finally  the average weight of the packages is:

[tex]{\displaystyle {\overline {X}}}=6\ lb[/tex]