Respuesta :

Answer:

4x^2+12x+9y^2

Step-by-step explanation:

the area of a square = L^2

L= Side

in this case L= 2x+3y

the area of a square = (2x+3y)^2 = (2x+3y)*(2x+3y)

we apply distributive property:

(2x+3y)*(2x+3y)= 2x*2x+2x*3y+3y*2x+3y*3y

(2x+3y)*(2x+3y) = 4x^2+6xy+6xy+9y^2

finally we have:

(2x+3y)*(2x+3y) = 4x^2+12xy+9y^2

the area of a square = 4x^2+12xy+9y^2

4x ^ 2 + 12x + 9y ^ 2