Respuesta :
Step-by-step explanation:
[tex]|2x-8|>6\iff 2x-8>6\ or\ 2x-8<-6\qquad\text{add 8 to both sides}\\\\2x-8+8>6+8\ or\ 2x-8+8<-6+8\\\\2x>14\ or\ 2x<2\qquad\text{divide both sides by 2}\\\\x>7\ or\ x<1 \to x\in(-\infty,\ 1)\ \cup\ (7,\ \infty)[/tex]


Answer:
Solution is x > 7 or x < 1.
Step-by-step explanation:
|2x - 8| > 6
This is equivalent to 2x - 8 > 6 or 2x - 8 < -6
2x - 8 > 6
2x > 14
x > 7.
2x - 8 < -6
2x < 2
x < 1.