contestada

The area of a square in square feet is
represented by 625z^2 − 150z + 9. Find an
expression for the perimeter of the
square. Then find the perimeter when
z = 15 ft.

Respuesta :

Answer:

Part 1) The expression for the perimeter is [tex]P=4(25z-3)[/tex] or  [tex]P=100z-12[/tex]

Part 2) The perimeter when  z = 15 ft. is [tex]P=1,488\ ft[/tex]

Step-by-step explanation:

Part 1)

we have

[tex]625z^{2}-150z+9[/tex]

Find the roots of the quadratic equation

Equate the equation to zero

[tex]625z^{2}-150z+9=0[/tex]

Complete the square

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]625z^{2}-150z=-9[/tex]

Factor the leading coefficient  

[tex]625(z^{2}-(150/625)z)=-9[/tex]

[tex]625(z^{2}-(6/25)z)=-9[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]625(z^{2}-(6/25)z+(36/2,500))=-9+(36/4)[/tex]

[tex]625(z^{2}-(6/25)z+(36/2,500))=0[/tex]

Rewrite as perfect squares

[tex]625(z-6/50)^{2}=0[/tex]

[tex]z=6/50=0.12[/tex] -----> root with multiplicity 2

so

The area is equal to  

[tex]A=625(z-0.12)(z-0.12)=[25(z-0.12)][25(z-0.12)]=(25z-3)^{2}[/tex]

The length side of the square is [tex]b=(25z-3)[/tex]

therefore

The perimeter is equal to

[tex]P=4b[/tex]

[tex]P=4(25z-3)[/tex]

[tex]P=100z-12[/tex]

Part 2) Find the perimeter when  z = 15 ft.

we have

[tex]P=100z-12[/tex]

substitute the value of z

[tex]P=100(15)-12=1,488\ ft[/tex]