Respuesta :

Answer:

[tex]e=0.66[/tex]

Step-by-step explanation:

The eccentricity of an ellipse is given by: [tex]e=\sqrt{1-\frac{b^2}{a^2} }[/tex]

The given ellipse has equation: [tex]9x^2+16y^2-72x+64y-368=0[/tex]

We can rewrite this equation in standard form to obtain:

[tex]\frac{(x-4)^2}{8^2}+\frac{y+2}{6^2}=1[/tex]

We compare to the general standard form equation: [tex]\frac{(x-h)^2}{a^2}+\frac{y-k}{b^2}=1[/tex]

to get: [tex]a=8,b=6[/tex]

We substitute into the eccentricity formula to get:

[tex]e=\sqrt{1-\frac{6^2}{8^2} }[/tex]

[tex]e=\frac{\sqrt{7}}{4}=0.661438[/tex]

The eccentricity is 0.66 to the nearest hundredth