Answer:
[tex]v = 2.2 \times 10^3 m/s[/tex]
Explanation:
Gravity on the surface of the planet is given as
[tex]g = \frac{GM}{R^2}[/tex]
here we know that
[tex]M = 4.34 \times 10^{24} kg[/tex]
[tex]R = 5.91 \times 10^6 m[/tex]
now we have
[tex]g = \frac{(6.67 \times 10^{-11})(4.34 \times 10^{24})}{(5.91 \times 10^6)^2}[/tex]
[tex]g = 8.3 m/s^2[/tex]
now by energy conservation we have
initial KE + initial gravitational PE = final gravitational PE
[tex]\frac{1}{2}mv^2 - \frac{GMm}{R} = - \frac{GMm}{R+h}[/tex]
[tex]v^2 = 2(\frac{GM}{R} - \frac{GM}{R + h})[/tex]
[tex]v^2 = 2(6.67 \times 10^{-11})(4.34 \times 10^{24})(\frac{1}{5.91 \times 10^6} - \frac{1}{5.91 \times 10^6 + 3.08 \times 10^5})[/tex]
[tex]v = 2.2 \times 10^3 m/s[/tex]